Аннотация:
С помощью классификации конечных простых групп доказывается: если $H$ – неразрешимая нормальная подгруппа конечной группы $G$, то в $H$ существует максимальная разрешимая подгруппа $S$ такая, что $G=HN_G(S)$. Тем самым, дается положительное решение проблемы 14.62 из “Коуровской тетради”. Как следствие, в любой конечной группе доказывается существование подгруппы, являющейся одновременно ${\mathfrak S}$-проектором и ${\mathfrak S}$-инъектором для класса ${\mathfrak S}$ всех разрешимых групп.