Эта публикация цитируется в
3 статьях
Обобщённо гиперарифметическая вычислимость над структурами
А. И. Стукачевab a Ин-т матем. им. С. Л. Соболева СО РАН, пр. Ак. Коптюга, 4, г. Новосибирск, 630090, РОССИЯ
b Новосибирский гос. ун-т, ул. Пирогова, 2, г. Новосибирск, 630090, РОССИЯ
Аннотация:
Рассматривается класс аппроксимационных пространств, порождённых допустимыми множествами и, в частности, наследственно конечными надстройками над структурами. Обобщённая вычислимость на аппроксимационных пространствах понимается как эффективная определимость в динамической логике. Аналогично понятию структуры,
$\Sigma$-определимой
в допустимом множестве, вводится понятие эффективной определимости структуры на аппроксимационном пространстве. Аналогично тому, как определяется отношение
$\Sigma$-сводимости, естественным образом возникает отношение сводимости на структурах, порождающее соответствующие полурешётки степеней структур (произвольной мощности), а также операция скачка. Устанавливается естественное вложение в эти полурешётки полурешётки гиперстепеней множеств натуральных чисел, сохраняющее операцию гиперскачка. Даётся синтаксическое описание структур, имеющих гиперстепень.
Ключевые слова:
теория вычислимости, допустимые множества, аппроксимационные пространства, конструктивные модели, вычислимый анализ, гиперарифметическая вычислимость.
УДК:
510.5 Поступило: 13.04.2015
Окончательный вариант: 07.11.2016
DOI:
10.17377/alglog.2016.55.606