Аннотация:
Данная работа входит в цикл работ авторов по алгебраической геометрии над произвольными алгебраическими системами и целиком посвящена понятию геометрической эквивалентности. Смысл этого понятия в том, что для двух геометрически эквивалентных алгебраических систем $\mathcal A$ и $\mathcal B$ сигнатуры $\mathrm L$ задачи классификации алгебраических множеств над $\mathcal A$ и $\mathcal B$ эквивалентны. Раскрывается связь между геометрической и квазиэквациональной эквивалентностями.