RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2018, том 57, номер 1, страницы 14–42 (Mi al833)

Эта публикация цитируется в 15 статьях

О максимальных и субмаксимальных $\mathfrak X$-подгруппах

В. Гоa, Д. О. Ревинbca

a Dep. Math., Univ. Sci. Tech. China, Hefei 230026, P. R. China
b Ин-т матем. им. С. Л. Соболева СО РАН, пр. Ак. Коптюга, 4, г. Новосибирск, 630090, РОССИЯ
c Новосибирский гос. ун-т, ул. Пирогова, 1, г. Новосибирск, 630090, РОССИЯ

Аннотация: Пусть $\mathfrak X$ – класс конечных групп, замкнутый относительно взятия подгрупп, гомоморфных образов и расширений. Следуя Х. Виланду, подгруппу $H$ конечной группы $G$ называют субмаксимальной $\mathfrak X$-подгруппой, если существует изоморфное вложение $\phi\colon G\hookrightarrow G^*$ группы $G$ в некоторую конечную группу $G^*$, при котором $G^\phi$ субнормальна в $G^*$ и $H^\phi=K\cap G^\phi$ для некоторой максимальной $\mathfrak X$-подгруппы $K$ группы $G^*$. В случае, когда $\mathfrak X$ совпадает с классом всех $\pi$-групп для некоторого множества $\pi$ простых чисел, субмаксимальные $\mathfrak X$-подгруппы называют субмаксимальными $\pi$-подгруппами. В своём докладе на известной конференции по конечным группам в г. Санта-Круз в 1979 г. Х. Виланд подчеркнул важность изучения субмаксимальных $\pi$-подгрупп, привёл без доказательства некоторые их свойства и сформулировал ряд открытых вопросов, связанных с этими подгруппами. Здесь доказываются свойства максимальных и субмаксимальных $\mathfrak X$- и $\pi$-подгрупп и обсуждаются некоторые открытые вопросы, как сформулированные Виландом, так и новые. Один из таких вопросов, принадлежащих Виланду, состоит в следующем. Всегда ли все субмаксимальные $\mathfrak X$-подгруппы сопряжены в конечной группе $G$, в которой все максимальные $\mathfrak X$-подгруппы сопряжены?

Ключевые слова: конечная группа, максимальная $\mathfrak X$-подгруппа, субмаксимальная $\mathfrak X$-подгруппа, холлова $\pi$-подгруппа, свойство $\mathscr D_\pi$.

УДК: 512.542.6

Поступило: 12.04.2017
Окончательный вариант: 06.12.2017

DOI: 10.17377/alglog.2018.57.102


 Англоязычная версия: Algebra and Logic, 2018, 57:1, 9–28

Реферативные базы данных:


© МИАН, 2024