Аннотация:
Исследуются йордановы почти конечномерные алгебры. Рассматриваются аналоги известных результатов, а именно, доказывается, что такие алгебры первичны и невырождены. Показывается, что свойство почти конечномерности сохраняется при переходе от альтернативной алгебры к присоединённой йордановой алгебре. Аналогичный результат устанавливается для ассоциативных почти конечномерных алгебр с инволюцией. Доказывается, что почти конечномерная йорданова PI-алгебра с единицей является либо конечным модулем над почти конечномерным центром, либо центральным порядком в алгебре невырожденной симметрической билинейной формы. Имеет место и следующий результат: если в йордановой алгебре с условием обрыва возрастающих цепей идеалов локально нильпотентный идеал имеет конечную коразмерность, то эта алгебра конечномерна. Кроме того, результат Е.Форманека [Commun. Algebra, 1, No. 1 (1974), 79–86] о том, что ассоциативные первичные PI-кольца с единицей вкладываются в свободный модуль конечного ранга над своим центром, обобщается на кольца Алберта.
Ключевые слова:йорданова почти конечномерная алгебра, ассоциативная почти конечномерная алгебра с инволюцией, почти конечномерная
йорданова PI-алгебра с единицей, кольца Алберта.