RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2018, том 57, номер 5, страницы 567–586 (Mi al867)

Вынуждение формул в структурах и классах Фрессе

А. Т. Нуртазин

Ин-т информ. вычисл. технол. МОН РК, ул. Пушкина, 125, г. Алма-Ата, 050010, КАЗАХСТАН

Аннотация: Предлагается семантический метод вынуждения формул конечными структурами из произвольного фиксированного класса Фрессе $\mathscr F$. Указываются известные и некоторые новые необходимые и достаточные условия, при которых данная $\mathscr M$ будет форсинг-структурой. Формула $\varphi$ вынуждается на $\bar a$ в бесконечной структуре $\mathscr M\Vdash\varphi(\bar a)$, если она вынуждается в $\mathscr F(\mathscr M)$ её некоторой конечной подструктурой. Доказывается, что любое $\exists\forall\exists$-предложение, истинное в некоторой форсинг-структуре, также выполняется в любом её экзистенциально замкнутом компаньоне.
При изучении форсинг-моделей является важным новое понятие форсинг-типа. Доказывается, что произвольная структура будет форсинг-структурой тогда и только тогда, когда все реализуемые в ней экзистенциальные типы являются форсинг-типами. Оказывается, что экзистенциально замкнутая структура, простая над кортежом, реализующим форсинг-тип, сама будет форсинг-структурой. Кроме того, любой форсинг-тип реализуется в некоторой экзистенциально замкнутой структуре, которая является моделью полной теории её форсинг-компаньона.

Ключевые слова: метод вынуждения, класс Фрессе, форсинг-структура, форсинг-тип, экзистенциально замкнутая структура, экзистенциально замкнутый компаньон.

УДК: 510.67

Поступило: 06.01.2017

DOI: 10.33048/alglog.2018.57.505


 Англоязычная версия: Algebra and Logic, 2018, 57:5, 368–380

Реферативные базы данных:


© МИАН, 2024