Аннотация:
Работа входит в цикл по универсальной алгебраической геометрии — разделу математики, который находится на сегодняшний день в стадии активной разработки и развития. Тематика и предметная область универсальной алгебраической геометрии имеет исток в классической алгебраической геометрии над полем, а язык и почти весь методический аппарат принадлежат теории моделей и универсальной алгебре. В центре внимания этой работы находится задача поиска Dis-пределов для данной алгебраической системы $\mathcal{A}$, т. е. таких алгебраических систем, в которые вкладываются все неприводимые координатные алгебры над $\mathcal{A}$ и в которых отсутствуют какие-либо иные конечно порождённые подсистемы. Для решения этой проблемы возникла потребность в хорошем описании главных универсальных классов и квазимногообразий. В первой части работы даются критерии для того, чтобы данный универсальный класс (или данное квазимногообразие) был главным. Во второй части формулируется в явном виде задача поиска Dis-пределов алгебраических систем и показывается, как во многих случаях результаты первой части статьи позволяют решить эту задачу.