Аннотация:
Ассоциативные кольца $R$ и $R'$ называются решёточно изоморфными, если изоморфны их решётки подколец $L(R)$ и $L(R')$. Изоморфизм решётки $L(R)$ на решётку $L(R')$ называется проектированием (или решёточным изоморфизмом) кольца $R$ на кольцо $R'$. Кольцо $R'$ называется проективным образом кольца $R$. В случаях, когда решёточный изоморфизм $\varphi$ влечёт изоморфизм между кольцами $R$ и $R^{\varphi}$, будем говорить, что кольцо $R$ определяется своей решёткой подколец. В работе продолжается исследование решёточных изоморфизмов конечных колец. Даётся полное описание проективных образов простых и полупростых конечных колец. Одним из основных результатов является теорема о решёточной определяемости кольца матриц, рассматриваемого над произвольным кольцом Галуа. Приводится описание проективных образов конечных колец, разложимых в
прямые суммы матричных колец, рассматриваемых над различными типами колец Галуа.