Аннотация:
Изучение автоморфизмов вычислимых и других структур является одним из связующих звеньев между теорией вычислимости и классической теорией групп. Вычислимо перечислимые структуры являются одними из наиболее важных невычислимых счётных объектов исследования в теории вычислимых моделей. Здесь внимание сфокусировано на решётке вычислимо перечислимых подструктур данной канонической вычислимой структуры. В частности, для тьюринговой степени $\mathbf{d}$ изучаются группы $\mathbf{d}$-вычислимых автоморфизмов решётки $\mathbf{d}$-перечислимых векторных подпространств, интервальной булевой алгебры $\mathcal{B}_{\eta}$ на упорядоченном множестве рациональных чисел, а также решётки $\mathbf{d}$-перечислимых подалгебр $\mathcal{B}_{\eta}$. Оказывается, что тьюрингова сводимость для этих групп может быть фактически заменена на вложимость групп. Кроме того, тьюрингова степень типов изоморфизма для этих групп равна второму тьюринговому скачку $\mathbf{d^{\prime\prime}}$ для множества $\mathbf{d}$.