RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2020, том 59, номер 1, страницы 27–47 (Mi al933)

Эта публикация цитируется в 1 статье

Тьюринговы степени и группы автоморфизмов решёток подструктур

Р. Д. Димитровa, В. С. Харизановаb, А. С. Морозовcd

a Dep. Math., Western Illinois Univ., Macomb, IL 61455, USA
b Dep. Math., George Washington Univ., Washington, DC 20052, USA
c Ин-т матем. им. С. Л. Соболева СО РАН, г. Новосибирск, РОССИЯ
d Новосибирский гос. ун-т, г. Новосибирск, РОССИЯ

Аннотация: Изучение автоморфизмов вычислимых и других структур является одним из связующих звеньев между теорией вычислимости и классической теорией групп. Вычислимо перечислимые структуры являются одними из наиболее важных невычислимых счётных объектов исследования в теории вычислимых моделей. Здесь внимание сфокусировано на решётке вычислимо перечислимых подструктур данной канонической вычислимой структуры. В частности, для тьюринговой степени $\mathbf{d}$ изучаются группы $\mathbf{d}$-вычислимых автоморфизмов решётки $\mathbf{d}$-перечислимых векторных подпространств, интервальной булевой алгебры $\mathcal{B}_{\eta}$ на упорядоченном множестве рациональных чисел, а также решётки $\mathbf{d}$-перечислимых подалгебр $\mathcal{B}_{\eta}$. Оказывается, что тьюрингова сводимость для этих групп может быть фактически заменена на вложимость групп. Кроме того, тьюрингова степень типов изоморфизма для этих групп равна второму тьюринговому скачку $\mathbf{d^{\prime\prime}}$ для множества $\mathbf{d}$.

Ключевые слова: автоморфизм, решётка $\mathbf{d}$-перечислимых векторных подпространств, группы $\mathbf{d}$-вычислимых автоморфизмов, интервальная булева алгебра на упорядоченном множестве рациональных чисел, тьюрингова сводимость, тьюрингова степень, тьюрингов скачок.

УДК: 510.65

Поступило: 06.03.2019
Окончательный вариант: 30.04.2020

DOI: 10.33048/alglog.2020.59.102


 Англоязычная версия: Algebra and Logic, 2020, 59:1, 18–32

Реферативные базы данных:


© МИАН, 2024