RUS  ENG
Полная версия
ЖУРНАЛЫ // Annals of Mathematics. Second Series // Архив

Ann. of Math. (2), 2014, том 179, выпуск 2, страницы 405–429 (Mi aom4)

Эта публикация цитируется в 9 статьях

A product theorem in free groups

A. A. Razborovabc

a Steklov Mathematical Institute, Moscow, Russia
b Institute for Advanced Study, Princeton, NJ
c University of Chicago, Chicago, IL

Аннотация: If $A$ is a finite subset of a free group with at least two noncommuting elements, then $|A\cdot A\cdot A|\geqslant\frac{|A|^2}{(\log|A|)^{O(1)}}$. More generally, the same conclusion holds in an arbitrary virtually free group, unless AA generates a virtually cyclic subgroup. The central part of the proof of this result is carried on by estimating the number of collisions in multiple products $A_1\cdot\ldots\cdot A_k$. We include a few simple observations showing that in this “statistical” context the analogue of the fundamental Plünnecke–Ruzsa theory looks particularly simple and appealing.

Поступила в редакцию: 18.06.2007
Исправленный вариант: 20.09.2013
Принята в печать: 25.09.2013

Язык публикации: английский

DOI: 10.4007/annals.2014.179.2.1



Реферативные базы данных:


© МИАН, 2025