Аннотация:
Для структурно-классификационного анализа сложно организованной информации предлагается использовать рекуррентные алгоритмы типа стохастической аппроксимации. Вводятся в рассмотрение функционалы оценки качества классификации, зависящие от ненормированных и нулевых моментов функций распределения вероятности появления объектов выборки в классах, а также вид оптимальной классификации. Предложен новый алгоритм классификации для такого типа критериев качества классификации, доказана теорема о его сходимости, обеспечивающая стационарное значение соответствующего функционала. Показано, что предложенный алгоритм может использоваться для решения широкого класса задач структурно-классификационного анализа.
Ключевые слова:структурно-классификационный анализ информации, размытая классификация, рекуррентные алгоритмы, стохастическая аппроксимация, типы размытости, структуризация параметров, кластерный анализ, кусочная аппроксимация сложных функций.
Статья представлена к публикации членом редколлегии:А. И. Михальский