Аннотация:
Рассматривается периодическая краевая задача для нелокального уравнения Гинзбурга–Ландау в слабодиссипативном его варианте. Изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых периодических решений. Показано, что в окрестности одномодовых периодических решений может существовать трехмерный локальный аттрактор, заполненный пространственно неоднородными периодическими по времени решениями. Для них получены асимптотические формулы. Результаты получены на базе использования и развития методов теории бесконечномерных динамических систем. В особом варианте рассматриваемого интегро-дифференциального уравнения с частными производными изучен вопрос о существовании глобального аттрактора. Для этого варианта нелинейной краевой задачи найдены ее решения в виде рядов.