Аннотация:
В кластер-анализе проблема числа кластеров весьма нетривиальна. На практике алгоритмы кластеризации требуют задать число кластеров заранее либо реализуют некоторый способ перебора разбиений, где окончательное решение принимается на основе эвристических критериев. Обычно используются два существенно разных способа перебора: иерархические алгоритмы и неирархические типа Isodata. Предлагается алгоритм кластеризации на основе алгоритма $K$-средних, сочетающий оба этих способа. Результат представляется последовательностью кластеризаций, которые не образуют иерархии в общем случае. Свойства последовательности позволяют исключить разбиения, которые заведомо не оптимальны. Из оставшихся кластеризаций можно сделать окончательный выбор. Показана связь предложенного алгоритма с алгоритмом разрезания графа кратчайшего незамкнутого пути. Алгоритм исследован на данных по ирисам.