Аннотация:
Рассматриваются стохастические системы управления, подверженные одновременному воздействию возмущений стохастической и детерминированной природы. Стохастические возмущения предполагаются случайными процессами, мультипликативными по состоянию, детерминированные – любыми процессами с конечной на бесконечном временно́м интервале энергией. Проводится сопоставление результатов детерминированной $H_\infty$-теории со стохастическими их аналогами. Связующим звеном между детерминированной и стохастической теориями является лемма об эквивалентности свойств устойчивости и ограниченности $\|L\|_\infty<\gamma$ нормы оператора возмущения $L$, с одной стороны, и разрешимости некоторых линейных матричных неравенств (ЛМН) – с другой. После того как стохастический вариант основной леммы установлен, задачи анализа системы и синтеза $\gamma$-регуляторов, ее стабилизирующих, решаются в основных чертах единообразно, в рамках единой ЛМН-методологии.
PACS:02.30.Yy
Статья представлена к публикации членом редколлегии:Б. Т. Поляк