Аннотация:
Рассматриваются замкнутые марковские сети массового обслуживания, содержащие конечный источник заявок, объем которого неограниченно возрастает. Приводятся уравнения для нормированных асимптотических значений средних длин очередей в условиях большой нагрузки. Для сетей со стационарным распределением мультипликативного вида элементы матрицы ковариаций аппроксимирующего гауссовского распределения и ее определитель явным образом выражаются через нормированные средние значения. Приводятся примеры, в которых первые, а следовательно, и вторые моменты длин очередей явно выражаются через параметры сети. На примере сети с многими типами заявок и блокировкой демонстрируется возможность применения предлагаемого подхода для нахождения наиболее вероятного состояния блокировки и дается оценка среднего времени его достижения в условиях редкого блокирования.