RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, номер 1, страницы 4–18 (Mi basm1)

Эта публикация цитируется в 3 статьях

The transvectants and the integrals for Darboux systems of differential equations

V. Baltag, I. Calin

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Аннотация: We apply the algebraic theory of invariants of differential equations to integrate the polynomial differential systems $dx/dt=P1_(x,y)+xC(x,y)$, $dy/dt=Q1_(x,y)+yC(x,y)$, where real homogeneous polynomials $P_1$ and $Q_1$ have the first degree and $C(x,y)$ is a real homogeneous polynomial of degree $r\ge 1$. In generic cases the invariant algebraic curves and the first integrals for these systems are constructed. The constructed invariant algebraic curves are expressed by comitants and invariants of investigated systems.

Ключевые слова и фразы: Polynomial differential systems, Darboux integrability, first integrals, invariant algebraic curve, invariant, comitant, transvectant.

MSC: 34C05, 58F14

Поступила в редакцию: 10.01.2008

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024