RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, номер 2, страницы 29–54 (Mi basm225)

Эта публикация цитируется в 1 статье

Research articles

A complete classification of quadratic differential systems according to the dimensions of $Aff(2,\mathbb R)$-orbits

N. Gherstega, V. Orlov, N. Vulpe

Institute of Mathematics and Computer Sciences, Academy of Sciences of Moldova, Chisinau, Moldova

Аннотация: In this article we consider the action of the group $Aff(2,\mathbb R)$ of affine transformations and time rescaling on real planar quadratic differential systems. Via affine invariant conditions we give a complete stratification of this family of systems according to the dimension $\mathcal D$ of affine orbits proving that $3\le\mathcal D\le6$. Moreover we give a complete topological classification of all the systems located on the orbits of dimension $\mathcal D\le5$ constructing the affine invariant criteria for the realization of each of 49 possible topologically distinct phase portraits.

Ключевые слова и фразы: quadratic differential system, Lie algebra of operators, $Aff(2,\mathbb R)$-orbit, affine invariant polynomial.

MSC: 34C14

Поступила в редакцию: 18.06.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024