Аннотация:
We study the behavior of solutions to the problem
$$
\begin{cases}
\varepsilon\Big(u''_\varepsilon(t)+A_1u_\varepsilon(t)\Big)+u'_\varepsilon(t)+ A_0u_\varepsilon(t)=f(t),\quad t>0,\\
u_\varepsilon(0)=u_0,\qquad u'_\varepsilon(0)=u_1,
\end{cases}
$$
in the Hilbert space $H$ as $\varepsilon\to0$, where $A_1$ and $A_0$ are two linear selfadjoint operators.
Ключевые слова и фразы:singular perturbations, Cauchy problem, boundary function.