Аннотация:
We prove that for a complete quasivariety $\mathcal K$ of topological $E$-algebras of countable discrete signature $E$ and each submetrizable $\mathsf{ANR}(k_\omega)$-space $X$ its free topological $E$-algebra $F_\mathcal K(X)$ in the class $\mathcal K$ is a submetrizable $\mathsf{ANR}(k_\omega)$-space.
Ключевые слова и фразы:topological universal algebra, free topological universal algebra, a quasivariety of topological algebras, absolute neighborhood retract, absolute neighborhood extensor, $k_\omega$-space.