RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, номер 2, страницы 89–101 (Mi basm291)

The variational approach to nonlinear evolution equations

Viorel Barbu

Octav Mayer Institute of Mathematics of Romanian Academy, Iaşi, Romania

Аннотация: In this paper, we present a few recent existence results via variational approach for the Cauchy problem
$$ \frac{dy}{dt}(t)+A(t)y(t)\ni f(t),\quad y(0)=y_0,\qquad t\in[0,T], $$
where $A(t)\colon V\to V'$ is a nonlinear maximal monotone operator of subgradient type in a dual pair $(V,V')$ of reflexive Banach spaces. In this case, the above Cauchy problem reduces to a convex optimization problem via Brezis–Ekeland device and this fact has some relevant implications in existence theory of infinite-dimensional stochastic differential equations.

Ключевые слова и фразы: Cauchy problem, convex function, minimization problem, parabolic equations, porous media equation, stochastic partial differential equations.

MSC: 34H05, 34LRO, 47E05

Поступила в редакцию: 15.07.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024