RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, номер 3, страницы 29–44 (Mi basm297)

A generalization of Hardy–Hilbert's inequality for non-homogeneous kernel

Namita Dasa, Srinibas Sahoob

a Department of Mathematics, Utkal University, Bhubaneswar, Orissa, India
b Department of Mathematics, Banki Autonomous College, Banki, Orissa, India

Аннотация: This paper deals with a generalization of Hardy–Hilbert's inequality for non-homogeneous kernel by considering sequences $(s_n)$, $(t_n)$, the functions $\phi_p$, $\phi_q$ and parameter $\lambda$. This inequality generalizes both Hardy–Hilbert's inequality and Mulholland's inequality, which includes most of the recent results of this type. As applications, the equivalent form, some particular results and a generalized Hardy–Littlewood inequality are established.

Ключевые слова и фразы: Hardy–Hilbert's inequality, Mulholland's inequality, $\beta$-function, Hölder's inequality.

MSC: 26D15

Поступила в редакцию: 15.10.2010

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024