RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, номер 3, страницы 16–27 (Mi basm322)

On Frattini subloops and normalizers of commutative Moufang loops

N. I. Sandu

Tiraspol State University, str. Iablochkin, 5, Chisinau, MD-2069, Moldova

Аннотация: Let $L$ be a commutative Moufang loop (CML) with the multiplication group $\mathfrak M$, and let $\mathfrak F(L)$, $\mathfrak F(\mathfrak M)$ be the Frattini subloop of $L$ and Frattini subgroup of $\mathfrak M$. It is proved that $\mathfrak F(L)=L$ if and only if $\mathfrak F(\mathfrak M)=\mathfrak M$, and the structure of this CML is described. The notion of normalizer for subloops in CML is defined constructively. Using this it is proved that if $\mathfrak F(L)\neq L$, then $L$ satisfies the normalizer condition and that any divisible subgroup of $\mathfrak M$ is an abelian group and serves as a direct factor for $\mathfrak M$.

Ключевые слова и фразы: commutative Moufang loop, multiplication group, Frattini subloop, Frattini subgroup, normalizer, loop with normalizer condition, divisible loop.

MSC: 20N05

Поступила в редакцию: 06.04.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024