RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, номер 3, страницы 34–43 (Mi basm33)

Эта публикация цитируется в 1 статье

Research articles

Ore extensions over 2-primal Noetherian rings

V. K. Bhat

School of Applied Physics and Mathematics, SMVD University, Katra, India

Аннотация: Let $R$ be a ring and $\sigma$ an automorphism of $R$. We prove that if $R$ is a 2-primal Noetherian ring, then the skew polynomial ring $R[x;\sigma]$ is 2-primal Noetherian. Let now $\delta$ be a $\sigma$-derivation of $R$. We say that $R$ is a $\delta$-ring if $a\delta\in P(R)$ implies $a\in P(R)$, where $P(R)$ denotes the prime radical of $R$. We prove that $R[x;\sigma,\delta]$ is a 2-primal Noetherian ring if $R$ is a Noetherian $\mathbb{Q}$-algebra, $\sigma$ and $\delta$ are such that $R$ is a $\delta$-ring, $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a\in R$ and $\sigma(P)=P$$P$ being any minimal prime ideal of $R$. We use this to prove that if $R$ is a Noetherian $\sigma(*)$-ring (i.e. $a\sigma(a)\in P(R)$ implies $a\in P(R)$$\delta$$\sigma$-derivation of $R$ such that $R$ is a $\delta$-ring and $\sigma(\delta(a))=\delta(\sigma(a))$, for all $a\in R$, then $R[x;\sigma,\delta]$ is a 2-primal Noetherian ring.

Ключевые слова и фразы: 2-primal, minimal prime, prime radical, nil radical, automorphism, derivation.

MSC: Primary 16XX; Secondary 16S36, 16N40, 16P40, 16W20, 16W25

Поступила в редакцию: 09.08.2007

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024