RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013, номер 2-3, страницы 99–105 (Mi basm338)

A selection theorem for set-valued maps into normally supercompact spaces

V. Valov

Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, P.O. Box 5002, North Bay, ON, P1B 8L7 Canada

Аннотация: The following selection theorem is established:
Let $X$ be a compactum possessing a binary normal subbase $\mathcal S$ for its closed subsets. Then every set-valued $\mathcal S$-continuous map $\Phi\colon Z\to X$ with closed $\mathcal S$-convex values, where $Z$ is an arbitrary space, has a continuous single-valued selection. More generally, if $A\subset Z$ is closed and any map from $A$ to $X$ is continuously extendable to a map from $Z$ to $X$, then every selection for $\Phi|A$ can be extended to a selection for $\Phi$.
This theorem implies that if $X$ is a $\kappa$-metrizable (resp., $\kappa$-metrizable and connected) compactum with a normal binary closed subbase $\mathcal S$, then every open $\mathcal S$-convex surjection $f\colon X\to Y$ is a zero-soft (resp., soft) map. Our results provide some generalizations and specifications of Ivanov's results (see [5–7]) concerning superextensions of $\kappa$-metrizable compacta.

Ключевые слова и фразы: continuous selections, Dugundji spaces, $\kappa$-metrizable spaces, spaces with closed binary normal subbase, superextensions.

MSC: 54C65, 54F65

Поступила в редакцию: 14.08.2013

Язык публикации: английский



© МИАН, 2024