RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2008, номер 3, страницы 44–56 (Mi basm35)

Research articles

The $GL(2,\mathbb R)$-orbits of the homogeneous polynomial differential systems

Driss Boularasa, Angela Mateib, A. Şubăc

a Département de Mathématiques, Université de Limoges
b Department of Mathematics, State University of Tiraspol, Chişinău, Moldova
c Department of Mathematics, State University of Moldova, Chişinău, Moldova

Аннотация: In this work, we study the generic homogeneous polynomial differential system $\dot{x}_1= P_k(x_1, x_2)$, $\dot{x}_2=Q_k(x_1,x_2)$ under the action of the center-affine group of transformations of the phase space, $GL(2,\mathbb R)$. We show that if the dimension of the $GL(2,\mathbb R)$-orbits of this system is smaller than four, then $deg(GCD(P_k,Q_k))\geq k-1$.

Ключевые слова и фразы: Group action, group orbits, dimension of orbits.

MSC: 34C05, 34C14

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024