Аннотация:
We study the behavior of solutions to the problem
$$
\left\{
\begin{array}{l}
\varepsilon u''_\varepsilon(t)+u'_\varepsilon(t)+A(t)u _\varepsilon(t)=f_\varepsilon(t),\quad t\in(0,T),\\
u_\varepsilon(0)=u_{0\varepsilon},\quad u'_\varepsilon(0)=u_{1\varepsilon},
\end{array}
\right.
$$
in the Hilbert space $\mathrm H$ as $\varepsilon\to0$, where $A(t)$, $t\in(0,\infty)$, is a family of linear self-adjoint operators.
Ключевые слова и фразы:singular perturbation, abstract second order Cauchy problem, boundary layer function, a priori estimate.