Эта публикация цитируется в
4 статьях
On the number of ring topologies on countable rings
V. I. Arnautova,
G. N. Ermakovab a Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, 5 Academiei str., MD-2028, Chisinau, Moldova
b Transnistrian State University, 25 October str., 128, Tiraspol, 278000, Moldova
Аннотация:
For any countable ring
$R$ and any non-discrete metrizable ring topology
$\tau_0$, the lattice of all ring topologies admits:
– Continuum of non-discrete metrizable ring topologies stronger than the given topology
$\tau_0$ and such that
$\sup\{\tau_1,\tau_2\}$ is the discrete topology for any different topologies;
– Continuum of non-discrete metrizable ring topologies stronger than
$\tau_0$ and such that any two of these topologies are comparable;
– Two to the power of continuum of ring topologies stronger than
$\tau_0$, each of them being a coatom in the lattice of all ring topologies.
Ключевые слова и фразы:
countable ring, ring topology, Hausdorff topology, basis of the filter of neighborhoods, number of ring topologies, lattice of ring topologies, Stone-Čech compacification.
MSC: 22A05 Поступила в редакцию: 10.02.2015
Язык публикации: английский