RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2016, номер 1, страницы 64–69 (Mi basm412)

Эта публикация цитируется в 1 статье

Linear groups that are the multiplicative groups of neofields

Anthony B. Evans

Wright State University

Аннотация: A neofield $N$ is a set with two binary operations, addition and multiplication, for which $N$ is a loop under addition with identity $0$, the nonzero elements of $N$ form a group under multiplication, and both left and right distributive laws hold. Which finite groups can be the multiplicative groups of neofields? It is known that any finite abelian group can be the multiplicative group of a neofield, but few classes of finite nonabelian groups have been shown to be multiplicative groups of neofields. We will show that each of the groups $GL(n, q)$, $PGL(n, q)$, $SL(n, q)$, and $PSL(n, q)$, $q$ even, $q\ne2$, can be the multiplicative group of a neofield.

Ключевые слова и фразы: neofield, linear group, orthomorphism, near orthomorphism.

MSC: 20N05, 12K99

Поступила в редакцию: 23.11.2015

Язык публикации: английский



© МИАН, 2024