RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, номер 1, страницы 15–28 (Mi basm440)

Эта публикация цитируется в 1 статье

Some properties of meromorphic solutions of logarithmic order to higher order linear difference equations

Benharrat Belaїdi

Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B.P. 227 Mostaganem-(Algeria)

Аннотация: This paper is devoted to the study of the growth of solutions of the linear difference equation
\begin{gather*} A_n(z)f(z+n)+A_{n-1}(z)f(z+n-1)\\ +\dots+A_1(z)f(z+1)+A_0(z)f(z)=0, \end{gather*}
where $A_n(z),\dots,A_0(z)$ are entire or meromorphic functions of finite logarithmic order. We extend some precedent results due to Liu and Mao, Zheng and Tu, Chen and Shon and others.

Ключевые слова и фразы: linear difference equations, meromorphic function, logarithmic order, logarithmic type, logarithmic lower order, logarithmic lower type.

MSC: 39A10, 30D35, 39A12

Поступила в редакцию: 25.09.2015

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024