RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, номер 3, страницы 120–134 (Mi basm453)

Some estimates for angular derivative at the boundary

Bülent Nafi Örnek

Department of Computer Engineering, Amasya University, Merkez-Amasya 05100, Turkey

Аннотация: In this paper, we establish lower estimates for the modulus of the values of $f(z)$ on boundary of unit disc. For the function $f(z)=1+c_1z+c_2z^2+\dots$ defined in the unit disc such that $f(z)\in\mathcal N(\beta)$ assuming the existence of angular limit at the boundary point $b$, the estimations below of the modulus of angular derivative have been obtained at the boundary point $b$ with $f(b)=\beta$. Moreover, Schwarz lemma for class $\mathcal N(\beta)$ is given. The sharpness of these inequalities has been proved.

Ключевые слова и фразы: Schwarz lemma on the boundary, Holomorphic function, Jack's lemma, Julia–Wolff lemma.

MSC: 30C80, 32A10

Поступила в редакцию: 07.08.2017

Язык публикации: английский



© МИАН, 2024