RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, номер 3, страницы 3–22 (Mi basm461)

Эта публикация цитируется в 1 статье

Semi-symmetric isotopic closure of some group varieties and the corresponding identities

Halyna Krainichuk, Olena Tarkovska

V. Stus Donetsk National University, Department of mathematical analysis and differential equations, 21000 Vinnytsia, Ukraine

Аннотация: Four families of pairwise equivalent identities are given and analyzed. Every identity from each of these families defines one of the following varieties: 1) the semi-symmetric isotopic closure of the variety of all Boolean groups; 2) the semi-symmetric isotopic closure of the variety of all Abelian groups; 3) the semi-symmetric isotopic closure of the variety of all groups; 4) the variety of all semi-symmetric quasigroups. It is proved that these varieties are different and form a chain. Quasigroups belonging to these varieties are described. In particular, quasigroups from 1) and 2) varieties are medial and in addition, they are either groups or non-commutative semi-symmetric quasigroups.

Ключевые слова и фразы: group, quasigroup, identity, isotopic closure, variety, totally symmetric, semi-symmetric, commutative.

MSC: 34C05, 58F14

Поступила в редакцию: 30.11.2016

Язык публикации: английский



© МИАН, 2024