RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, номер 1, страницы 39–51 (Mi basm491)

On fully idempotent semimodules

Rafieh Razavi Nazari, Shaban Ghalandarzadeh

Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

Аннотация: Let $S$ be a semiring and $M$ an $S$-semimodule. Let $N$ and $L$ be subsemimodules of $M$. Set $N\star L:= Hom_{S}(M,L)N=\sum\{\varphi(N)\mid \varphi\in Hom_{S}(M,L)\}$. Then $N$ is called an idempotent subsemimodule of $M$, if $N=N\star N$. An $S$-semimodule $M$ is called fully idempotent if every subsemimodule of $M$ is idempotent. In this paper we study the concept of fully idempotent semimodules as a generalization of fully idempotent modules and investigate some properties of idempotent subsemimodules of multiplication semimodules.

Ключевые слова и фразы: semiring, fully idempotent semimodule, multiplication semimodule, regular semimodule.

MSC: 16Y60

Поступила в редакцию: 26.05.2018

Язык публикации: английский



© МИАН, 2024