RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, номер 1, страницы 3–19 (Mi basm496)

Эта публикация цитируется в 1 статье

Finite $2$-groups with a non-Dedekind non-metacyclic norm of Abelian non-cyclic subgroups

Fedir Lyman, Tetyana Lukashova, Marina Drushlyak


Аннотация: The authors study finite $2$-groups with non-Dedekind non-metacyclic norm $N_{G}^{A}$ of Abelian non-cyclic subgroups depending on the cyclicness or the non-cyclicness of the center of a group $G$. The norm $N_{G}^{A}$ is defined as the intersection of the normalizers of Abelian non-cyclic subgroups of $G$. It is found out that such $2$-groups are cyclic extensions of their norms of Abelian non-cyclic subgroups. Their structure is described.

Ключевые слова и фразы: finite group, non-Dedekind group, non-metacyclic group, norm of group, norm of Abelian non-cyclic subgroups.

MSC: 20D25

Поступила в редакцию: 01.07.2017

Язык публикации: английский



© МИАН, 2024