RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, номер 1, страницы 63–74 (Mi basm523)

Эта публикация цитируется в 1 статье

Research articles

On the number of topologies on countable skew fields

V. I. Arnautova, G. N. Ermakovab

a Vladimir Andrunachievici Institute of Mathematics and Computer Science, 5 Academiei str., MD-2028, Chisinau Moldova
b Transnistrian State University, 25 October str., 128, Tiraspol, 278000 Moldova

Аннотация: If a countable skew field $ R $ admits a non-discrete metrizable topology $ \tau _0 $, then the lattice of all topologies of this skew fields admits:
– Continuum of non-discrete metrizable topologies of the skew fields stronger than the topology $ \tau _0 $ and such that $ \sup \{\tau _1, \tau _2 \} $ is the discrete topology for any different topologies $ \tau_1$ and $\tau _2 $;
– Continuum of non-discrete metrizable topologies of the skew fields stronger than $ \tau _0 $ and such that any two of these topologies are comparable;
– Two to the power of continuum of topologies of the skew fields stronger than $ \tau _0 $, each of them is a coatom in the lattice of all topologies of the skew fields.

Ключевые слова и фразы: countable skew fields, topological skew fields, Hausdorff topology, basis of the filter of neighborhoods, number of topologies on countable skew fields, lattice of topologies on skew fields.

MSC: 22A05

Поступила в редакцию: 28.01.2020

Язык публикации: английский



© МИАН, 2024