RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, номер 2, страницы 24–29 (Mi basm530)

Эта публикация цитируется в 1 статье

Research articles

Commutative weakly tripotent group rings

Peter V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, "Acad. G. Bonchev", str., bl. 8, 1113 Sofia, Bulgaria

Аннотация: Very recently, Breaz and Cîmpean introduced and examined in Bull. Korean Math. Soc. (2018) the class of so-called weakly tripotent rings as those rings $R$ whose elements satisfy at leat one of the equations $x^3=x$ or $(1-x)^3=1-x$. These rings are generally non-commutative. We here obtain a criterion when the commutative group ring $RG$ is weakly tripotent in terms only of a ring $R$ and of a group $G$ plus their sections.
Actually, we also show that these weakly tripotent rings are strongly invo-clean rings in the sense of Danchev in Commun. Korean Math. Soc. (2017). Thereby, our established criterion somewhat strengthens previous results on commutative strongly invo-clean group rings, proved by the present author in Univ. J. Math. & Math. Sci. (2018). Moreover, this criterion helps us to construct a commutative strongly invo-clean ring of characteristic $2$ which is not weakly tripotent, thus showing that these two ring classes are different.

Ключевые слова и фразы: tripotent rings, weakly tripotent rings, strongly invo-clean rings, group rings.

MSC: 16S34, 16U99, 20C07

Поступила в редакцию: 18.11.2019

Язык публикации: английский



© МИАН, 2024