RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, номер 1, страницы 22–34 (Mi basm562)

Subordination and superordination for certain analytic functions associated with Ruscheweyh derivative and a new generalised multiplier transformation

Anessa Oshaha, Maslina Darusb

a Department of Mathematics, Faculty of Science, Sabratha University, Sabratha, Libya
b Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor D. Ehsan, Malaysia

Аннотация: In the present paper, we study the operator defined by using Ruscheweyh derivative $\mathcal{R}^m$ and new generalized multiplier transformation
$$ \mathcal{D}^{m}_{\lambda_{1},\lambda_{2},\ell,d }f(z) =z+\sum_{k=n+1}^{\infty}\left[\dfrac{\ell(1+(\lambda_{1}+\lambda_{2})(k-1))+d}{\ell(1+\lambda_{2}(k-1))+d}\right]^m a_kz^{k}$$
denoted by $\mathcal{R}\mathcal{D}^{m,\alpha}_{\lambda_{1},\lambda_{2},\ell,d }:\mathcal{A}_n\rightarrow \mathcal{A}_n$, $ \mathcal{R}\mathcal{D}^{m,\alpha}_{\lambda_{1},\lambda_{2},\ell,d }f(z)=(1-\alpha) \mathcal{R}^mf(z)+ \alpha\mathcal{D}^{m}_{\lambda_{1},\lambda_{2},\ell,d }f(z) $, where $ \mathcal{A}_{n}=\left\{f\in \mathcal{H}(\mathbb{U}), f(z) =z+a_{n+1}z^{n+1} +a_{n+2}z^{n+2}+...,z\in\mathbb{U}\right\}$ is the class of normalized analytic functions with $\mathcal{A}_{1}=\mathcal{A}$. We obtain several differential subordinations associated with the operator $\mathcal{R}\mathcal{D}^{m,\alpha}_{\lambda_{1},\lambda_{2},\ell,d }f(z)$. Further, sandwich-type results for this operator are considered.

Ключевые слова и фразы: Ruscheweyh operator, multiplier transformation, differential subordination, differential superordination.

MSC: 30C45, 30C50

Поступила в редакцию: 10.01.2019

Язык публикации: английский

DOI: 10.56415/basm.y2022.i1.p22



Реферативные базы данных:


© МИАН, 2024