RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, номер 3, страницы 22–29 (Mi basm578)

Optimal control of jump-diffusion processes with random parameters

Mario Lefebvre

Department of Mathematics and Industrial Engineering, Polytechnique Montréal, Canada

Аннотация: Let $X(t)$ be a controlled jump-diffusion process starting at $x \in [a,b]$ and whose infinitesimal parameters vary according to a continuous-time Markov chain. The aim is to minimize the expected value of a cost function with quadratic control costs until $X(t)$ leaves the interval $(a,b)$, and a termination cost that depends on the final value of $X(t)$. Exact and explicit solutions are obtained for important processes.

Ключевые слова и фразы: Brownian motion, Poisson process, first-passage time, jump size, differential-difference equation.

MSC: 93E20

Поступила в редакцию: 28.09.2022

Язык публикации: английский

DOI: 10.56415/basm.y2022.i3.p22



Реферативные базы данных:


© МИАН, 2024