RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, номер 2, страницы 19–24 (Mi basm58)

Эта публикация цитируется в 2 статьях

Identities with permutations associated with quasigroups isotopic to groups

G. Belyavskaya

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chisinau, Moldova

Аннотация: In this note we select a class of identities with permutations including three variables in a quasigroup $(Q,\cdot)$ each of which provides isotopy of this quasigroup to a group and describe a class of identities in a primitive quasigroup $(Q,\cdot,\backslash,/)$ each of which is sufficient for the quasigroup $(Q,\cdot)$ to be isotopic to a group. From these results it follows that in the identity of $V$. Belousov [6] characterizing a quasigroup isotopic to a group (to an abelian group) two from five (one of four) variables can be fixed.

Ключевые слова и фразы: Quasigroup, primitive quasigroup, group, abelian group, isotopy of quasigroups, identity.

MSC: 20N05

Поступила в редакцию: 09.07.2007

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024