RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, номер 3, страницы 56–94 (Mi basm581)

Эта публикация цитируется в 1 статье

Poisson stable motions and global attractors of symmetric monotone nonautonomous dynamical systems

David Cheban

State University of Moldova, Faculty of Mathematics and Computer Science, Laboratory ”Fundamental and Applied Mathematics”, A. Mateevich Street 60, MD–2009 Chişinau, Moldova

Аннотация: This paper is dedicated to the study of the problem of existence of Poisson stable (Bohr/Levitan almost periodic, almost automorphic, almost recurrent, recurrent, pseudo-periodic, pseudo-recurrent and Poisson stable) motions of symmetric monotone non-autonomous dynamical systems (NDS). It is proved that every precompact motion of such system is asymptotically Poisson stable. We give also the description of the structure of compact global attractor for monotone NDS with symmetry. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We apply our general results to the study of the problem of existence of different classes of Poisson stable solutions and global attractors for a chemical reaction network and nonautonomous translation-invariant difference equations.

Ключевые слова и фразы: Poisson stable motions, compact global attractor, monotone nonautonomous dynamical systems, translation-invariant dynamical systems.

MSC: 39A24, 37B05, 37B20, 37B55, 34C12, 34C27

Поступила в редакцию: 23.11.2022

DOI: 10.56415/basm.y2022.i3.p56



© МИАН, 2024