RUS  ENG
Полная версия
ЖУРНАЛЫ // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Архив

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, номер 1, страницы 65–84 (Mi basm86)

Эта публикация цитируется в 2 статьях

Research articles

Limits of solutions to the semilinear wave equation with small parameter

Andrei Perjan

Moldova State University Faculty of Mathimatic and Computer Science, Chişinău, Moldova

Аннотация: We study the existence of the limits of solution to singularly perturbed initial boundary value problem of hyperbolic – parabolic type with boundary Dirichlet condition for the semilinear wave equation. We prove the convergence of solutions and also the convergence of gradients of solutions to perturbed problem to the corresponding solutions to the unperturbed problem as the small parameter tends to zero. We show that the derivatives of solution relative to time-variable possess the boundary layer function of the exponential type in the neighborhood of $t=0$.

Ключевые слова и фразы: Semiliniar wave equation, singular perturbation, boundary layer function.

MSC: 35B25, 35L70, 35L05

Поступила в редакцию: 27.09.2005

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024