Аннотация:
В 2012 г. доказано, что действительные алгебраические числа распределены неравномерно, но регулярно согласно определениям Г. Вейля (1916) и А. Бейкера, В. Шмидта (1970). Особенно неравномерно они распределены в окрестностях рациональных чисел с малыми знаменателями. В данной статье впервые перечислены условия, которым должны удовлетворять короткие интервалы, чтобы им принадлежало много действительных алгебраических чисел. При выполнении таких условий распределение алгебраических чисел приобретает черты регулярности, что уже предполагает наличие законов приближения трансцендентных чисел алгебраическими числами. Это, в свою очередь, дает шансы на доказательство гипотезы Вирзинга о приближении действительных чисел алгебраическими и целыми алгебраическими числами.