Аннотация:
Известно, что спектры (множества значений) верхних и нижних частот Сергеева нулей, знаков и корней линейного дифференциального уравнения порядка выше двух с непрерывными коэффициентами принадлежат классу суслинских множеств неотрицательной полуоси расширенной числовой прямой. Более того, для спектров верхних частот уравнений третьего порядка ранее доказано обращение этого результата в предположении принадлежности спектрам нуля. В настоящей работе получено обращение сформулированного утверждения для уравнений четвертого порядка и выше. А именно для произвольного содержащего нуль суслинского подмножества S неотрицательной полуоси расширенной числовой прямой и натурального числа n, большего 3, построено линейное дифференциальное уравнение порядка n, спектры верхних частот Сергеева нулей, знаков и корней которого совпадают с множеством S.