Аннотация:
Построены и обоснованы вычислительные схемы решения задачи Коши для интегро-дифференциального уравнения Прандтля с сингулярным интегралом по отрезку действительной оси, понимаемым в смысле главного значения по Коши. Данное уравнение приводится к равносильным уравнениям Фредгольма второго рода с помощью обращения сингулярного интеграла в трех классах функций по Мусхелишвили и применения спектральных соотношений для сингулярного интеграла. Одновременно исследуются условия разрешимости интегральных уравнений Фредгольма второго рода с логарифмическим ядром специального вида и такие уравнения
приближенно решаются. Новые вычислительные схемы основаны на применении к интегралу, входящему в равносильное уравнение, спектральных соотношений для сингулярного интеграла. Получены равномерные оценки погрешностей приближенных решений.
Ключевые слова:интегро-дифференциальное уравнение; уравнение Прандтля; численное решение; метод ортогональных многочленов.