RUS  ENG
Полная версия
ЖУРНАЛЫ // Contributions to Game Theory and Management // Архив

Contributions to Game Theory and Management, 2013, том 6, страницы 434–446 (Mi cgtm138)

Эта публикация цитируется в 1 статье

Polar Representation of Shapley Value: Nonatomic Polynomial Games

Valeri A. Vasil'ev

Sobolev Institute of Mathematics, Russian Academy of Sciences, Siberian Branch, Prosp. Acad. Koptyuga 4, Novosibirsk, 630090, Russia

Аннотация: The paper deals with polar representation formula for the Shapley value, established in (Vasil’ev, 1998). Below, we propose a new, simplified proof of the formula for nonatomic polynomial games. This proof relies on the coincidence of generalized Owen extension and multiplicative Aumann-Shapley expansion for polynomial games belonging to $pNA$ (Vasil’ev, 2009). The coincidence mentioned makes it possible to calculate Aumann-Shapley expansion in a straightforward manner, and to complete new proof of the polar representation formula for nonatomic case by exploiting the generalized Owen integral formula, established in (Aumann and Shapley, 1974).

Ключевые слова: Shapley value, nonatomic polynomial game, generalized Owen extension, polar form, polar representation formula.

Язык публикации: английский



© МИАН, 2024