RUS  ENG
Полная версия
ЖУРНАЛЫ // Contributions to Game Theory and Management // Архив

Contributions to Game Theory and Management, 2014, том 7, страницы 246–253 (Mi cgtm234)

An axiomatization of the proportional prenucleolus

Natalia Naumova

St. Petersburg State University, Faculty of Mathematics and Mechanics, Universitetsky pr. 28, Petrodvorets, St. Petersburg, 198504, Russia

Аннотация: The proportional prenucleolus is defined on the class of all positive TU games with finite sets of players. The set of axioms used by Sobolev (1975) for axiomatic justification of the prenucleolus is modified. It is proved that the proportional prenucleolus is a unique value that satisfies 4 axioms: efficiency, anonymity, proportionality, and proportional DM consistency. The proof is a modification of the proof of Sobolev's theorem.
For strictly increasing concave function $U$ defined on $(0,+\infty)$ with range equal to ${\rm R}^1$, a generalization of the proportional prenucleolus is called $U$–prenucleolus. The axioms proportionality and proportional DM consistency are generalized for its justification.

Ключевые слова: cooperative games; proportional nucleolus; prenucleolus; consistency.

Язык публикации: английский



© МИАН, 2024