Аннотация:
It is considered the problem connected with the combinatorial metric approach to the notion of solution of matrix games. According to this approach it is searched a matrix $B$ that possesses equilibrium and is the closest to the given matrix $A$ in the sense of some metric $d(A, B).$ In the case when $d(A,B)$ is the number of pairs $(i,j)$ such that $a_{ij} \neq b_{ij}$ it is established some properties of the quantity $\max_A\min_B d(A,B)$.