RUS  ENG
Полная версия
ЖУРНАЛЫ // Contributions to Game Theory and Management // Архив

Contributions to Game Theory and Management, 2010, том 3, страницы 22–28 (Mi cgtm72)

On the Metric Approach in the Theory of Matrix Games

Аbdulla A. Azamov

Institute of Mathematics and Informational Technologies, Uzbekistan, Tashkent

Аннотация: It is considered the problem connected with the combinatorial metric approach to the notion of solution of matrix games. According to this approach it is searched a matrix $B$ that possesses equilibrium and is the closest to the given matrix $A$ in the sense of some metric $d(A, B).$ In the case when $d(A,B)$ is the number of pairs $(i,j)$ such that $a_{ij} \neq b_{ij}$ it is established some properties of the quantity $\max_A\min_B d(A,B)$.

Ключевые слова: matrix game, equilibrium situation, metrics, combinatorial approach.

Язык публикации: английский



© МИАН, 2025