RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2021, том 22, выпуск 2, страницы 257–270 (Mi cheb1032)

Эта публикация цитируется в 1 статье

Подпрямая неразложимость и атомы решеток конгруэнций алгебр с оператором и симметрической основной операцией

В. Л. Усольцев

Волгоградский государственный социально-педагогический университет (г. Волгоград)

Аннотация: В статье изучаются атомы решеток конгруэнций и подпрямая неразложимость алгебр с одним оператором и основной операцией меньшинства, определенной специальным образом и называемой симметрической. Операцией меньшинства называется тернарная операция $d(x,y,z)$, удовлетворяющая тождествам $d(x, y, y) = d(y, y, x) = d(y, x, y) = x$. Алгебра подпрямо неразложима, если она имеет наименьшую ненулевую конгруэнцию. Алгеброй с операторами называется универсальная алгебра, сигнатура которой состоит из двух непустых непересекающихся частей: основной, которая может содержать произвольные операции, и дополнительной, состоящей из операторов. Операторами называются унарные операции, действующие как эндоморфизмы относительно основных операций, то есть перестановочные с основными операциями. Решетка с нулем называется атомной, если любой ее элемент содержит некоторый атом. Решетка с нулем называется точечной (atomistic), если любой ее ненулевой элемент представляется как решеточное объединение некоторого множества атомов.
Показано, что решетка конгруэнций алгебр с одним оператором и основной симметрической операцией является атомной. Описано строение атомов в решетках конгруэнций алгебр данного класса. Получено полное описание подпрямо неразложимых алгебр в данном классе, а также алгебр, имеющих точечную решетку конгруэнций.

Ключевые слова: подрямо неразложимая алгебра, решетка конгруэнций, атом решетки конгруэнций, атомная решетка, алгебра с операторами.

УДК: 512.579

DOI: 10.22405/2226-8383-2018-22-2-257-270



© МИАН, 2024