Аннотация:
В данной работе построен новый метод решения дифференциальных уравнений в частных производных с помощью последовательности вложенных обобщенных параллелепипедальных сеток.
Данный метод является обобщением и развитием метода В. С. Рябенького — Н. М. Коробова приближенного решения уравнений с частными производными на случай использования произвольных обобщенных параллелепипедальных сеток для целочисленных решеток. Также найдена погрешность данного метода. В случае использования бесконечной последовательности вложенных обобщённых параллелепипедальных сеток будет иметь место достаточно быстрая сходимость.
Кроме того предложен вариант построения оптимальных сеток в двумерном случае. Он основан на приближении алгебраических решёток целочисленными. В двумерном случае построенные таким образом решётки всегда будут давать обобщённые параллелепипедальные сетки. При этом имеются простые способы оценки качества полученных сеток. Один такой способ, основанный на использовании гиперболического параметра, рассмотрен в данной работе.
Ключевые слова:конечные поля, квадраты, суммы.
УДК:517
Поступила в редакцию: 24.05.2021 Принята в печать: 20.09.2021