RUS  ENG
Полная версия
ЖУРНАЛЫ // Чебышевский сборник // Архив

Чебышевский сб., 2022, том 23, выпуск 2, страницы 5–20 (Mi cheb1174)

Обобщение преобразования Лапласа для решения дифференциальных уравнений с кусочно-постоянными коэффициентами

Ф. С. Авдеевa, О. Э. Яремкоb, Н. Н. Яремкоc

a Орловский государственный университет (г. Орёл)
b Московский государственный технический университет «Станкин» (г. Москва)
c Национальный исследовательский технологический университет «МИСиС» (г. Москва)

Аннотация: В статье развивается теория интегральных преобразований с целью разработки операционного исчисления для исследования переходных процессов. Введен аналог преобразования Лапласа, который может быть применен к выражениям с кусочно-постоянным множителем перед оператором дифференцирования. Определены понятия, такие как, оригинал, изображение, свертка. Доказаны теоремы о дифференцировании оригинала, о дифференцировании изображения и другие. Дано определение обобщенной свертки и доказана формула для вычисления такой свертки. На основе понятия свертки определен интеграл дробного порядка. Главным инструментом в развитии теории обобщенного операционного исчисления является метод операторов преобразования. С его помощью установлена связь обобщенных интегральных преобразований Лапласа, введенных в статье, с классическим интегральным преобразованием Лапласа. Найдено решение задачи с кусочно-постоянными коэффициентами о нагреве полубесконечного стержня.

Ключевые слова: Обобщение преобразования Лапласа, формула обращения, оператор преобразования, интеграл дробного порядка.

УДК: 517.44

Поступила в редакцию: 22.07.2020
Принята в печать: 22.06.2022

DOI: 10.22405/2226-8383-2022-23-2-5-20



© МИАН, 2024