Аннотация:
В статье приводится определение шарнирного механизма, учитывающее его кинематическую природу. Это определение существенно отличается от принятого рядом математиков в недавних работах. Если использовать не учитывающее кинематической подоплёки принятое ныне определение, то классический результат А.Б.Кемпе [1] о возможности черчения по частям произвольной плоской алгебраической кривой шарнирами подходящим образом выбранных плоских шарнирных механизмов нельзя считать достаточно обоснованным самим Кемпе. Что и было отмечено в современной литературе [6], и даже привело к обвинениям Кемпе в ошибке. Предложенное в работах [6, 7] развитие и современное обоснование результата Кемпе, по существу, представляет собой модификацию метода Кемпе построения нужного механизма из механизмов-кирпичиков, выполняющих алгебраические действия. Однако, оно основано на использовании сложного языка алгебраической геометрии, что приводит к замене коротких и прозрачных рассуждений Кемпе на порядок более длинными и трудновоспринимаемыми текстами. При нашем определении шарнирного механизма можно дать строгую формулировку теоремы Кемпе, для доказательства которой достаточно аргументов Кемпе с минимальными уточнениями. Это уточнённое доказательство приведено в статье. В статье обсуждается современное развитие результата Кемпе, и претензии к рассуждениям Кемпе. А также приведены общие мысли о математике, возникшие у автора в связи с теоремой Кемпе и её современным развитием.